Date of origin of the SARS coronavirus strains
نویسندگان
چکیده
BACKGROUND A new respiratory infectious epidemic, severe acute respiratory syndrome (SARS), broke out and spread throughout the world. By now the putative pathogen of SARS has been identified as a new coronavirus, a single positive-strand RNA virus. RNA viruses commonly have a high rate of genetic mutation. It is therefore important to know the mutation rate of the SARS coronavirus as it spreads through the population. Moreover, finding a date for the last common ancestor of SARS coronavirus strains would be useful for understanding the circumstances surrounding the emergence of the SARS pandemic and the rate at which SARS coronavirus diverge. METHODS We propose a mathematical model to estimate the evolution rate of the SARS coronavirus genome and the time of the last common ancestor of the sequenced SARS strains. Under some common assumptions and justifiable simplifications, a few simple equations incorporating the evolution rate (K) and time of the last common ancestor of the strains (T0) can be deduced. We then implemented the least square method to estimate K and T0 from the dataset of sequences and corresponding times. Monte Carlo stimulation was employed to discuss the results. RESULTS Based on 6 strains with accurate dates of host death, we estimated the time of the last common ancestor to be about August or September 2002, and the evolution rate to be about 0.16 base/day, that is, the SARS coronavirus would on average change a base every seven days. We validated our method by dividing the strains into two groups, which coincided with the results from comparative genomics. CONCLUSION The applied method is simple to implement and avoid the difficulty and subjectivity of choosing the root of phylogenetic tree. Based on 6 strains with accurate date of host death, we estimated a time of the last common ancestor, which is coincident with epidemic investigations, and an evolution rate in the same range as that reported for the HIV-1 virus.
منابع مشابه
Possibility of Faecal-Oral Transmission of Novel Coronavirus (SARS-CoV-2) via Consumption of Contaminated Foods of Animal Origin: A Hypothesis
This article has no abstract. DOI: 10.18502/jfqhc.7.1.2445
متن کاملIntroducing the SARS-CoV-2 and discussing the possible origin of the virus
The emergence of the dangerous and deadly COVID-19 disease in late 2019 in Wuhan, China, and its rapid spread has had a profound global impact on health, mental security, the economy, culture and politics of various countries, drawing the attention of the medical community and related sciences for identification and treatment of this disease. Various studies on the disease have identified a new...
متن کاملMosaic evolution of the severe acute respiratory syndrome coronavirus.
Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decompositio...
متن کاملDiscovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus
A large number of SARS-related coronaviruses (SARSr-CoV) have been detected in horseshoe bats since 2005 in different areas of China. However, these bat SARSr-CoVs show sequence differences from SARS coronavirus (SARS-CoV) in different genes (S, ORF8, ORF3, etc) and are considered unlikely to represent the direct progenitor of SARS-CoV. Herein, we report the findings of our 5-year surveillance ...
متن کاملThe evil role of spike in the coronaviruses: structure, function and evolution
1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BMC Infectious Diseases
دوره 4 شماره
صفحات -
تاریخ انتشار 2004